Previous Fora / 2011

BARABÁSI, Albert László

Director, Center for Complex Network Research, Northeastern University

Albert-László Barabási is a Distinguished University Professor at Northeastern University, where he directs the Center for Complex Network Research, and holds appointments in the Departments of Physics, Computer Science and Biology, as well as in the Department of Medicine, Harvard Medical School and Brigham and Women Hospital, and is a member of the Center for Cancer Systems Biology at Dana Farber Cancer Institute. A Hungarian born native of Transylvania, Romania, he received his Masters in Theoretical Physics at the Eötvös University in Budapest, Hungary and was awarded a Ph.D. three years later at Boston University. After a year at the IBM T.J. Watson Research Center, he joined Notre Dame as an Assistant Professor, and in 2001 was promoted to the Professor and the Emil T. Hofman Chair. Barabási recently released on April 29th his newest book "Bursts: The Hidden Pattern Behind Everything We Do" (Dutton, 2010) available in five languages. He has also authored "Linked: The New Science of Networks" (Perseus, 2002), currently available in eleven languages, is co-author of "Fractal Concepts in Surface Growth" (Cambridge, 1995), and the co-editor of "The Structure and Dynamics of Networks" (Princeton, 2005). His work lead to the discovery of scale-free networks in 1999, and proposed the Barabasi-Albert model to explain their widespread emergence in natural, technological and social systems, from the cellular telephone to the WWW or online communities. His work on complex networks have been widely featured in the media, including the cover of Nature, Science News and many other journals, and written about in Science, Science News, New York Times, USA Today, Washington Post, American Scientist, Discover, Business Week, Die Zeit, El Pais, Le Monde, London’s Daily Telegraph, National Geographic, The Chronicle of Higher Education, New Scientist, and La Republica, among others. He has been interviewed by BBC Radio, National Public Radio, CBS and ABC News, CNN, NBC, and many other media outlets.

 

Education / Academic Career
     University of Bucharest, major in physics and engineering, 1986-1989
     M.Sc., 1991, Eotvos Lorand University, Budapest, in physics;
     Ph.D., 1994, Boston University, in physics;

Awards
Barabási is a Fellow of the American Physical Society. In 2005 he was awarded the FEBS Anniversary Prize for Systems Biology and in 2006 the John von Neumann Medal by the John von Neumann Computer Society from Hungary, for outstanding achievements in computer-related science and technology. In 2004 he was elected into the Hungarian Academy of Sciences and in 2007 into the Academia Europaea. Then in 2008 he was an award recipient for the C&C Prize from the NEC C&C Foundation. Recently in 2009 APS voted him Outstanding Referee and the National Academies of Sciences award him the 2009 Cozzarelli Prize in Washington, DC. Recently Barabási was awarded the 2011 Lagrange Prize-CRT Foundation on June 30, 2011 for his contributions in "The Challenge of Complex Systems".

 

ABSTRACT

11:00-13:00 18 NOVEMBER
THEMATIC SESSION II. Hungarian Academy of Sciences:“Networks”

The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. While control theory offers mathematical tools to steer engineered and natural systems towards a desired state, we lack a framework to control complex self-organized systems. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes whose time-dependent control can guide the system’s entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network’s degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but dense and homogeneous networks can be controlled via a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the hubs.
(In collaboration with Y. Liu and JJ Slotine.)